Concordia University - Portland CU Commons

Math & Science Department (SURI)

Summer Undergraduate Research Institute (SURI)

1-1-2010

Kinetic Analysis of Prodrug Activation and ATP/ UTP Substrate Preference of Nine Human Deoxycytidine Kinase Mutants

Breanna Wentz Concordia University - Portland

Jaclyn Einspahr Concordia University - Portland

Michael H. Godsey Concordia University - Portland, mgodsey@cu-portland.edu

Follow this and additional works at: http://commons.cu-portland.edu/suri_msd Part of the <u>Chemistry Commons</u>

Recommended Citation

Wentz, Breanna; Einspahr, Jaclyn; and Godsey, Michael H., "Kinetic Analysis of Prodrug Activation and ATP/UTP Substrate Preference of Nine Human Deoxycytidine Kinase Mutants" (2010). *Math & Science Department (SURI)*. 2. http://commons.cu-portland.edu/suri_msd/2

This Poster is brought to you for free and open access by the Summer Undergraduate Research Institute (SURI) at CU Commons. It has been accepted for inclusion in Math & Science Department (SURI) by an authorized administrator of CU Commons. For more information, please contact libraryadmin@cu-portland.edu.

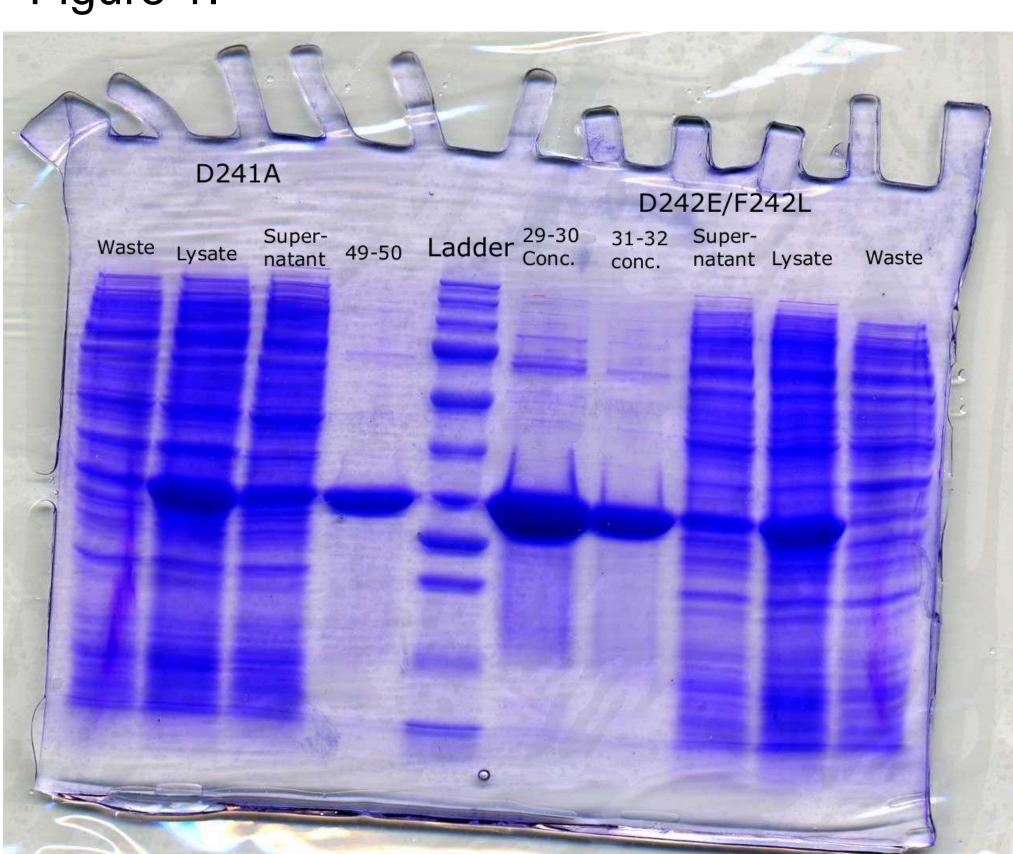
CONCORDIA

UNIVERSITY

KINETIC ANALYSIS OF PRODRUG ACTIVATION AND ATP/UTP SUBSTRATE PREFERENCE OF NINE HUMAN DEOXYCYTIDINE KINASE MUTANTS

Breanna Wentz*, Jaclyn Einspahr*, Michael Godsey Ph.D Math and Science Department, Concordia University, Portland, OR 97211. *Authors contributed equally to this work.

Abstract / Introduction


Deoxynucleoside analogues are prodrugs that can function as inhibitors of both viral and cellular DNA replication processes. They are important in anti-cancer therapy because they hinder DNA synthesis and cellular mitosis. Within the cell, deoxyribonucleotides are synthesized using the salvage pathways by converting the unphosphorylated nucleosides to their mono, di- and tri-phosphate forms using a phosphoryl donor: ATP or UTP. Human deoxycytidine kinase (dCK) is the first and rate-limiting enzyme in this process. The dCK protein uses nucleotide triphosphates to phosphorylate several clinically important nucleoside analogue prodrugs in addition to its natural substrates. The preferred physiological phosphoryl donor for dCK is UTP although it is less prevalent in the human body than ATP. Our objective is to improve the understanding of the phosphate-donor binding loop of dCK by kinetic analysis of a series of mutants of Asp241 and Phe242. These mutants were designed in an attempt to improve the activity of dCK with phosphate donors. Results show several mutants with improved kinetics and some with an ATP donor preference over UTP.

Materials and Methods

Mutated histidine-tagged dCK proteins were grown in E.coli and purified by immobilized metal affinity chromatography using Co++ resin. Purified proteins were analyzed by SDS-PAGE gel electrophoresis. Protein was >95% pure. Kinetic assays were performed in assay buffer (100mM Tris pH 7.5, 200mM KCl, 5mM MgCl2, 80µM Phosphoenolpyruvate, 400 μ M NADH, and 250 μ M cytosine- β -Darabinofuranoside (araC)). Helper enzymes lactate dehydrogenase and pyruvate kinase were added to reaction. Phosphoryl donor (ATP or UTP) was added in concentration ranging from 1µM to 200µM. Finally, 0.4µM dCK was added and NADH oxidation was monitored spectrophometrically by A₃₄₀ decrease over time (Agarwal)

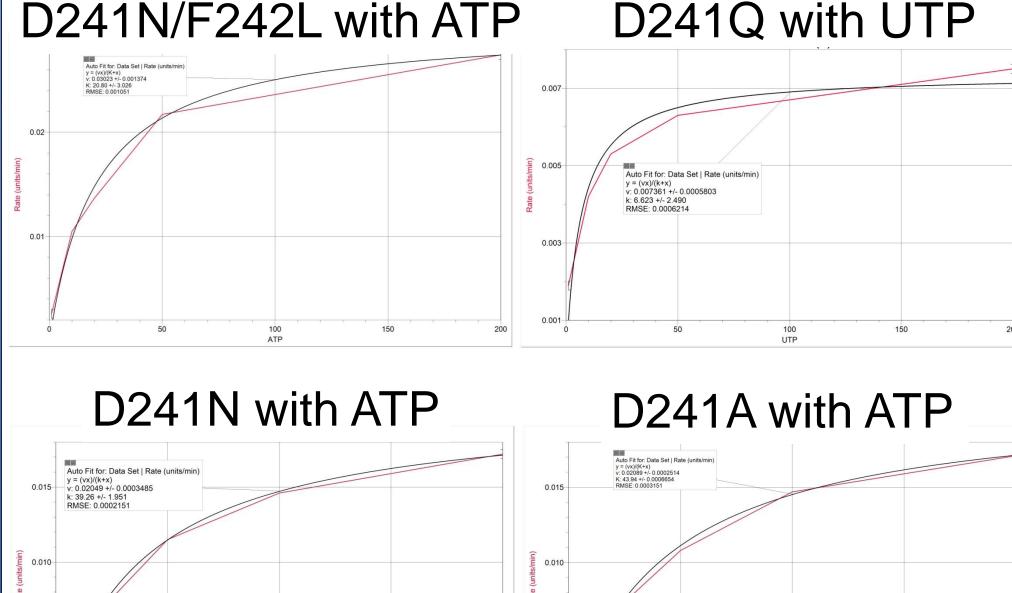

Results

Figure 1:

Gel indicates the presence of the mutant dCK proteins D241A and D241E/F242L after purification. Bands appeared at the expected protein size of 31 kilodaltons as indicated by the ladder. This showed that our purified protein was in present in the samples collected. All other samples produced similar results.

Figure 2:

Michaelis-Menten Kinetics: Initial velocity (V_0) calculated using NADH absorbance decrease vs. concentration of the phosphate donor used, either ATP or UTP. Phosphate acceptor araC was 250µM in all reactions. All other experiments produced similar curves.

 k_{cat} are in sec⁻¹, K_{M} are in μ M, V_{max} are in μ M/sec, and k_{cat}/K_{M} are in μ M⁻¹sec⁻¹. V_{max} and $K_{\rm M}$ values are determined by curve fitting to the M-M equation. $K_{\rm M}$ is defined as the substrate concentration required to reach $\frac{1}{2}$ V_{max}. Lower $K_{\rm M}$ indicates less substrate is required to approach maximum velocity. A higher k_{cat}/K_{M} value indicates a more efficient enzyme.

Our results showed that mutating the dCK residues will open up the active donor site to make it more accessible to bind ATP and UTP resulting in more phosphate donor flexibility. Significantly we found an increased rate for mutants D241N, D2412N/F242L, and F242L. This research has the potential to progress anti-cancer therapy as a more efficient form of dCK can act as an inhibitor of both viral and cellular DNA replication. Kinetic assays with other nucleoside analogues will be performed to extend the results of our research.

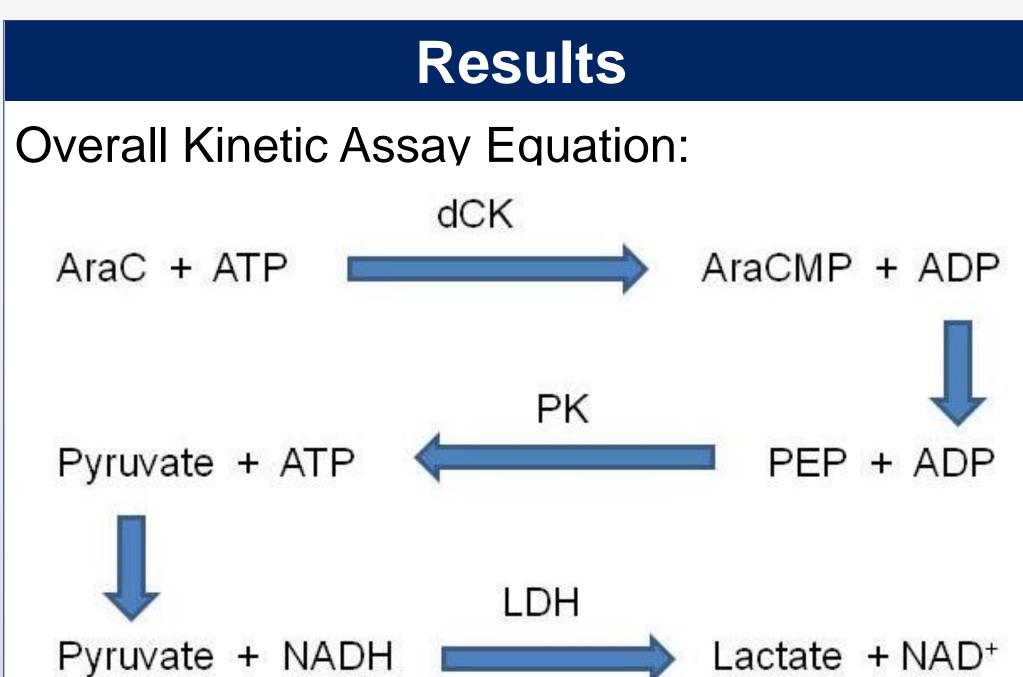
Results

ıbstrate	WT dCK .4 μM		D241E dCK .4µM		D241N dCK .4µM	
ΓP	V _{max}	3.42×10 ⁻⁸	V _{max}	2.30×10-8	V _{max}	2.0×10-2
	Km	52	K _m	37	K _m	35
	K _{cat}	0.085	K _{cat}	.057	K _{cat}	0.14
	K_{cat}/K_{m}	1.6×10-3	K_{cat}/K_{m}	1.6×10-3	K_{cat}/K_{m}	3.9x10 ⁻³
TP	V _{max}	8.29×10-9	∨ _{ma×}	1.26×10-8	V _{max}	5.2x10 ⁻³
	Km	25	К _m	31	Km	40
	K _{cat}	0.021	K _{cat}	0.031	K _{cat}	.035
	K _{cat} /K _m	8.4×10-4	K _{cat} /K _m	1.0×10-3	K_{cat}/K_{m}	8.7×10-4
ıbstrate	D241Q dCK.4µM		D241E/F242L dCK.4µM		D241N/F242L dCK .4µM	
ΓP	V _{max}	2.9x10 ⁻²	V _{max}	2.6x10-2	V _{max}	3.1x10-2
	K _m	30	K _m	49	K _m	23
	K _{cat}	0.19	K _{cat}	0.18	K _{cat}	0.21
	K _{cat} /K _m	6.4x10 ⁻³	K_{cat}/K_{m}	3.6×10-3	K_{cat}/K_{m}	9.0x10 ⁻³
TP	V _{max}	7.9x10-3	V _{max}	1.1×10-2	V _{max}	2.0x10-2
	К _m	9.6	K _m	27	K _m	38
	K _{cat}	0.053	Kcat	0.076	Kcat	0.14
	K _{cat} /K _m	5.5x10-3	K_{cat}/K_{m}	2.8x10 ⁻³	K _{cat} /K _m	3.6x10 ⁻³
ıbstrate	D241Q/F242L dCK.4µM		D241A dCK .4µM		L191Q dCK.4µM	
ΓP	V _{max}	2.0×10-2	V _{max}	2.1x10-2	V _{ma×}	2.3x10 ⁻²
	K _m	20	K _m	50	K _m	80
	K _{cat}	0.14	K _{cat}	0.14	K _{cat}	0.16
	K _{cat} / K _m	6.8×10-3	K_{cat}/K_{m}	2.8x10-3	K_{cat}/K_{m}	1.9×10-3
TP	V _{max}	1.2x10-2	V _{max}	6.0×10-3	V _{max}	5.1×10-3
	К _m	14	K _m	30	K _m	41
	K _{cat}	0.078	Kcat	0.041	Kcat	0.034
	K _{cat} /K _m	5.5x10-3	K_{cat}/K_{m}	1.3x10 ⁻³	K _{cat} /K _m	8.2×10-4
Ibstrate	10002001 200005 Com	L dCK .4µM				
ΓP	V _{max}	1.7×10-2	Michaelis- Menten Equation			
	K _m	22	$V_0 = V_{max}[S]$			
	K _{cat}	0.12				
	K _{cat} /K _m	5.3x10 ⁻³			. [0]	
TP	V _{max}	1.0×10-2	K _m +[S]			
	Km	24				
	K _{cat}	0.067				
	K_{cat}/K_{m}	2.8×10-3				

Conclusions

NADH oxidation and between ratio phosphorylation by dCK is 1:1. Pyruvate kinase and Lactate dehydrogenase are orders of magnitude faster than dCK. Therefore, by measuring NADH oxidation we can measure phosporylation by dCK. (Agarwal) [NADH] is determined by absorption: $A_{340} = \ell x \epsilon x$ [NADH], where A is the absorbance at 340nm, 2 is the path length (1cm) and ϵ is the absorption coefficient of NADH=6200M⁻¹cm⁻¹.

Agarwal, K. C. et al. (1978). Methods in Enzymology. 51, 483-490. Godsey, M.H. et al. (2006). Structural basis for the preference of UTP over ATP in human deoxycytidine kinase: Illuminating the role of main-chain reorganization. *Biochemistry*, 45 (2), 452-461.


Kesler, G. et al. (2004). Stimulation of deoxycytidine kinase results in prolonged maintenance of the enzyme activity. Nucleosides, Nucleotides & Nucleic Acids, 23 (8 & 9), 1357–1361.

Sabini, E. et al. (2003). Structure of human dCK suggests strategies to improve anticancer and antiviral therapy. Nature Structural Biology, 10 (7), 513-519.

We would like to thank the Arnon Lavie lab at University of Illinois at Chicago, Department of Biochemistry for the donation of dCK enzyme mutants & Tonia Gebhart for her previous work on this project. Funding was provided by Concordia University Summer Undergraduate Research Program.

CONCORDIA UNIVERSITY

NADH absorbs light at 340nm, while NAD+ does not. Based on the above reactions, the

References

Acknowledgements