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Abstract 

Vulnerable atherosclerotic plaques are characterized by large necrotic cores caused by 

impaired clearance of apoptotic cells (efferocytosis) in the artery wall. Targeted antibody 

blockade of CD47 (CD47), an anti-efferocytosis protein, enhances efferocytosis and 

reduces plaque area in mouse models of atherosclerosis. LDL receptor-related protein-1 

(LRP1) is a pro-efferocytosis receptor whose deletion from macrophages accelerates 

atherogenesis. We recently found that CD47 requires macrophage LRP1 to limit 

atherosclerosis. Thus, we hypothesize that the enhanced efferocytosis caused by CD47 

also requires macrophage LRP1. We conducted in vitro studies using wildtype (WT) and 

LRP1-/- macrophages as efferocytes and either Jurkat lymphocyte cells or WT and LRP1-

/- murine macrophages as apoptotic cell substrates (ACs). To stimulate efferocytosis, 

violet fluorescent-labeled apoptotic cells were co-incubated with green fluorescent-

labeled efferocytes in the presence of CD47 (10µg/mL) or IgG control. Phagocytic 

index (PI) is determined using confocal microscopy and flow cytometry as the percent of 

efferocytes with internalized ACs. In experiments using Jurkat cells as ACs, CD47 

increased PI 2.4-fold and 2.0-fold in WT and LRP1-/- efferocytes, respectively, compared 

to IgG control. No differences in PI were observed between WT and LRP1-/- efferocytes 

treated with CD47 or IgG control. In experiments using WT and LRP1-/- macrophages 

as ACs, we observed no differences in PI between WT and LRP1-/- efferocytes. 

Interestingly, the use of LRP1-/- macrophages as ACs reduced the PI of WT efferocytes 

by 44.7% relative to WT macrophage ACs and independently of CD47. These data 

suggest that the loss of LRP1 on ACs, not the efferocyte, impairs efferocytosis 

independently of CD47 by rendering the dying cells a poor substrate for clearance.  
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CD47 Blockade Enhances Macrophage Efferocytosis Via a Process Requiring Low-

Density Lipoprotein Receptor-Related Protein 1 

Introduction 

Atherosclerosis is a progressive inflammatory disease of the arteries, the 

underlying cause of myocardial infarction (MI) and cerebrovascular accident (CVA), the 

leading causes of death worldwide (WHO, 2018). Atherosclerotic plaques develop 

progressively throughout an individual’s lifetime and can become vulnerable to rupture. 

A key feature of vulnerable plaques is the formation of a necrotic core (NC). The NC 

contains cellular debris and lipids originating from apoptotic cells which have undergone 

secondary necrosis as a result of their impaired removal through efferocytosis (Linton et 

al., 2015; Tabas, 2016). By studying the pathogenesis and resolution of the necrotic core 

via efferocytosis, novel treatments can be created to lower the mortality rate of 

atherosclerotic sequelae MI and CVA. 

 In healthy individuals, the arteries are primarily composed of the endothelium 

(intima), sub-endothelial region, a layer of smooth muscle cells (media), and adventitia 

(Fig. 1). The endothelium is the inner-most layer and is composed of a single layer of 

simple squamous endothelial cells connected by tight junctions to prevent leakage of 

circulating blood from the lumen where blood flows (Saladin, 2012).  

There are two common types of blood flow, laminar and turbulent flow. Laminar 

flow occurs in regions where blood flows in a straight line, free of branching. In areas of 

laminar flow, endothelial cells exhibit coaxial alignment and synthesize compounds 

which promote endothelial health and atherosclerosis resistance. In contrast, areas of 

curvature, branching, and bifurcation have turbulent flow, and endothelial cells present 
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B. 

A. 

E. 

D. 

C. 

C. 

Figure 1. General Anatomy of an Artery. A. 
The lumen is the opening of the artery where 
blood flows. B. The intima is a single layer of 
endothelial cells. Immediately underneath it 
is the sub-endothelial space where 
atherosclerosis develops. C. The elastic 
lamina can be present in both positions, as 
shown, depending on the size of the artery. 
They give the arteries elasticity to 
compensate for the dynamic nature of blood 
flow in the arteries. D. The media is a 
multilayer region composed of smooth 
muscle cells. It’s contribution to 
atherosclerosis is significant, though it will 
not be covered in this text. E. The externa 
(adventitia) is a layer primarily composed of 
collagen on the outermost portion of the 
blood vessel. 

polymorphic structure and disordered alignment leading to a susceptibility to 

atherosclerosis (Linton et al., 2015). These athero-susceptible regions also show an 

increased inflammatory response (Linton et al., 2015).  

Atherosclerosis is initiated (Fig. 2) by the deposition and retention of 

apolipoprotein B (ApoB) containing lipoproteins (LDL), from circulation, into the 

subendothelial region of athero-susceptible areas of the arteries. The ApoB component of 

LDL interacts with proteoglycans in the subendothelial matrix and becomes trapped. 

Trapped LDL can undergo modification by interactions with reactive oxygen species 

(ROS) leading to the formation of oxidized LDL (ox-LDL). The LDL and ox-LDL incite 

an inflammatory response by the overlying endothelium.  

One common inflammatory response is the upregulation of nuclear transcription 

factors in the nucleus of the endothelial cells which cause the presentation of monocyte 

adherent proteins on the luminal side of the endothelium. Monocytes present in the blood 

roll along the endothelium, attach to the adherent proteins, and migrate into the 
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Figure 2. Atherosclerosis progression. A. Initiation begins with LDL-cholesterol depositing 
into the subendothelial region between the endothelium (intima) and smooth muscle cells 
(media) of the artery wall. B. Activation of the endothelium leads to monocyte recruitment 
into the subendothelial space where they differentiate into macrophages and begin 
phagocytosing LDL. C. Macrophages uptake cholesterol faster than they can process it 
through reverse cholesterol transport and become macrophage foam cells. D. Foam cells 
undergo programmed cell death (apoptosis) and are not efficiently cleared through 
efferocytosis. The apoptotic foam cells undergo secondary necrosis and contribute their 
contents to the plaque forming a necrotic core. E. There is little negative feedback and the 
cycle repeats resulting in the growth of the necrotic core. Eventually, the plaque ruptures 
leading to the formation of a thrombus in the lumen. The thrombus cuts off blood flow 
downstream causing infarction which leads to tissue death downstream of the thrombus.   

A. B. C. D. E. 

subendothelial space (Kasikara, Doran, Cai, & Tabas, 2018; Linton et al., 2015; Moore & 

Tabas, 2011). 

Monocytes differentiate into macrophages and begin the process of LDL and Ox-

LDL uptake, and conversion to HDL (efflux) by way of reverse cholesterol transport. 

Initially, the clearance of LDL is likely beneficial (Moore, Sheedy, & Fisher, 2013) 

however, there is a net influx of LDL/Ox-LDL which overwhelms the efflux mechanism 

leading to the formation of lipid-laden foam cell macrophages.  

Foam cells are characterized by a decreased ability to migrate out of the sub-

endothelial space, leading to an increased inflammatory response and advanced complex 

plaques (Moore et al., 2013). Foam cells, with their decreased ability to emigrate out of 

the cell wall, undergo programmed cell death (apoptosis) likely as a result of endoplasmic 

reticulum stress (Seimon & Tabas, 2009). 
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In atherosclerosis, apoptosis is dysregulated, and cell death occurs at an 

accelerated rate due to the highly toxic environment in advanced plaques (Linton et al., 

2015). Apoptosis is normally resolved through programmed cell removal, known as 

efferocytosis (Elliott, Koster, & Murphy, 2017). In the early stages of atherosclerosis, the 

rate of clearance appears to be conserved due to low the low levels of apoptotic cells 

present in the plaque (Seimon & Tabas, 2009; Tabas, 2010). However, in advanced 

plaques, the necrotic core (NC) shows a high level of macrophage debris and lipid 

content, leading to the conclusion that post-apoptotic (necrotic) foam cells are a driving 

force in the development of the NC and instability of advanced plaques. Post-apoptotic 

necrosis involves leaky membranes and organelle swelling leading to complete cellular 

death (Seimon & Tabas, 2009). Thus, necrotic foam cells contribute their lipid contents 

and cellular debris to the NC.  

Under normal conditions, the body can remove upwards of one-million apoptotic 

cells per second (Kojima, Weissman, & Leeper, 2017). Efferocytosis is a highly 

conserved and regulated process to prevent off-target removal of healthy tissue (Kojima 

et al., 2017). However, in atherosclerosis, this process is dysregulated leading to an 

accumulation of post-apoptotic cellular debris as mentioned above (Kojima et al., 2017).  

Efferocytosis involves the engulfment (phagocytosis) of whole apoptotic cells by 

either professional (macrophages) or non-professional (dendritic cells, smooth muscle 

cells) efferocytes. Several molecules have been implicated in the balance of efferocytosis 

signaling (Fig. 3). Efferocytosis signaling can be categorized into the, “don’t eat me,” 

“find me,” and “eat me” stages. 



CD47 BLOCKADE AND LRP1 EFFEROCYTOSIS 8 

  

Efferocytosis 

Figure 3. Normal Efferocytosis and 
Impaired Efferocytosis. A. A healthy 
cell, shown in yellow, expresses the 
anti-efferocytosis signal, CD47. 
CD47 interacts with SIRP⍺ which 

is present on the incoming 
macrophage (green). B. When 
the healthy cell undergoes 
apoptosis (shown in orange), 
CD47 is down regulated and pro-
efferocytosis signals are 
upregulated. From the top down. 
CD36 interacts with oxidized 
moieties of efferocytosis signals 
such as ox-phosphatidylserine, 
or ox-LDL. LRP1 interacts with a 
phosphatidylserine/calreticulin 
complex. MerTK interacts with 
the efferocytosis signal Gas6. C. 
The interaction between pro-
efferocytosis signals and pro-
efferocytosis receptors allows for 
the phagocytosis (efferocytosis) 
of the apoptotic cell. A key 
difference between general 
phagocytosis and efferocytosis is 
that the apoptotic cell is engulfed 
whole. D. In atherosclerotic 
plaques, CD47 remains 
upregulated on the apoptotic cell. 
This interaction prevents 
efferocytosis and leads to 
secondary necrosis of the 
apoptotic cell. 

Apoptosis 

Healthy 
cell 

Macrophage A. 

B. 

C. 

D. 

Healthy cells express anti-efferocytosis “don’t eat me” signals such as CD47, an 

integrin-associated cell surface protein which prevents immune cells from marking 

healthy cells for removal. CD47 interacts with the transmembrane protein SIRP found 

on the surface of the engulfing cell, inhibiting efferocytosis (Gardai et al., 2005). CD47 is 

overexpressed in malignant tumors, and anti-CD47 (CD47) antibodies have been shown 

to have a positive effect on malignant tumor regression (Majeti et al., 2009). As a result, 

CD47 became a subject of study in atherosclerosis where it has been shown to be 
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upregulated in atherosclerotic plaques. Furthermore, a CD47 antibody blockade has been 

shown to prevent atherosclerosis via increased efferocytosis (Kojima et al., 2016). 

Efferocytosis initiation occurs when an apoptotic cell expresses chemoattractant 

“find me” ligands. In addition to recruiting both professional and non-professional 

efferocytes, these ligands are also responsible for decreasing expression of a cell’s “don’t 

eat me” signals and rapidly upregulating the expression of “eat me” signals (Tabas, 

2010).  

Pro-efferocytosis “eat me” signals are expressed on the surface of apoptotic cells. 

Several pro-efferocytosis “eat me” signals and bridging molecules have been identified. 

In one example, calreticulin, a chaperone protein, is upregulated on the surface of 

apoptotic cells. Calreticulin forms a complex with phosphatidylserine on the surface of 

the apoptotic cell. This complex interacts with the pro-efferocytosis receptor low-density 

lipoprotein receptor-related protein 1 (LRP1), allowing phagocytosis of the apoptotic cell 

(Kojima et al., 2017).  

Pro-efferocytosis receptors are found on the surface of both professional and non-

professional efferocytes. Several cell-surface “eat me” receptor proteins and have been 

identified such as CD36, MerTK, and the subject of this study, LRP1 (Fadok, Warner, 

Bratton, & Henson, 1998; Thorp, Cui, Schrijvers, Kuriakose, & Tabas, 2008; Yancey et 

al., 2011). When activated, pro-efferocytosis receptors allow for engulfment of the 

apoptotic cell by the efferocyte. Recently, it has been shown that the loss of macrophage 

LRP1 accelerates atherosclerosis progression, leading to larger plaques, increased 

necrotic core size, and decreased efferocytosis (Overton, Yancey, Major, Linton, & 

Fazio, 2007; Yancey et al., 2010; Yancey et al., 2011).  
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Based on these previous studies, Fazio lab conducted experiments to ascertain 

what effect the loss LRP1, present on the efferocyte, had on efferocytosis in the presence 

of a CD47 antibody blockade (CD47). They conducted in vivo experiments on athero-

susceptible (ApoE-/-), and ApoE-/-/macrophage specific LRP1 (MLRP1-/-) double 

knockout mice fed a high-fat diet for 12 weeks. Both groups of mice were treated with a 

CD47 blocking antibody or IgG control on alternating days for twelve weeks. Mice were 

euthanized, and cross sections of the aortic sinus were removed. The lesion and necrotic 

core areas of the aortic sinus were then measured and quantified. The results show that 

the double knockout (ApoE-/-/ MLRP1-/-) mice had larger lesions and larger necrotic 
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Fig 4. Macrophage LRP1
-/-

/ApoE
-/-

 double knockout mice were fed a high-fat (Western) diet 

while receiving anti-CD47 blocking antibody (200g/injection) or IgG control every other day 

for 12 weeks. (A) and (B) aortic sinus sections were stained with oil red-O lesion area 
quantified. (C) Spleen weight to body weight ratio. (D) and (E) necrotic core area was 
determined in aortic sinus sections using Mason’s Trichrome stain and acellular area 
quantified. *P<0.05; ****P<0.0001. Figure courtesy of Paul Mueller, Ph.D. 

CD47 IgG 
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cores when compared to the ApoE-/- mice (Fig. 4 & 5). Spleen to body weight ratio was 

measured as a way to verify the effects of CD47. Young erythrocytes express high 

levels of CD47, and a CD47 blockade prevents efferocytosis of apoptotic erythrocytes. 

Apoptotic erythrocytes accumulate in the spleen. Therefore, mice receiving an CD47 

treatment have a larger spleen ratio compared to the no-treatment group. 

Because of these findings, we hypothesized that the enhanced efferocytosis 

imparted by an CD47 blockade, requires macrophage LRP1. To test this hypothesis, we 

conducted in vitro studies using J774, and WT or LRP1-/- macrophages as efferocytes. 

Jurkat lymphocytes were used as apoptotic cell substrates (ACs). Additional experiments 

involved testing LRP1-/- macrophages as substrates for efferocytosis, this involved in 

vitro studies using either WT or LRP1-/- macrophages as either efferocyte or ACs. Further 

IgG CD47 

IgG CD47
0

5

10

15

20

S
p

le
e
n

 t
o

 B
o

d
y
 W

e
ig

h
t 

R
a
ti

o

****

IgG CD47
0

100

200

300

400

500

S
e

c
ti

o
n

a
l 

L
e

s
io

n
 A

re
a

(x
1

0
3


m
2
)

*
A. 

C. 

D. 

B. 

IgG CD47
0

10

20

30

N
e
c
ro

ti
c
 A

re
a

(x
1

0
3


m
2
)

*

Fig 5. ApoE
-/-

 mice were fed a high fat while receiving anti-CD47 blocking antibody 

(200g/injection) or IgG control every other day for 12 weeks. (A) and (B) aortic sinus sections 

were stained with oil red-O lesion area quantified. (C) Spleen weight to body weight ratio. (D) 
and (E) necrotic core area was determined in aortic sinus sections using Mason’s Trichrome 
stain and acellular area quantified. *P<0.05; ****P<0.0001. Figure courtesy of Paul Mueller, 
Ph.D. 
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experiments were also conducted to measure protein expression of select pro-

efferocytosis receptors in WT and LRP1-/- macrophages.  

Methods  

Cells 

For in vitro assay development, we used murine derived J774 macrophages as 

efferocytes and human-derived Jurkat T-lymphocytes as apoptotic substrate. Both cell 

types were incubated in Corning T-75cm2 flasks at 37C. J774’s were cultured in 10% 

FBS, 1% penicillin/streptomycin, Gibco 1X Dulbecco’s Modified Eagle Medium 

(DMEM). Jurkat cells were incubated in 10% FBS, 1% penicillin/streptomycin, Gibco 

1640 Rosewell Park Memorial Institute (RPMI) + GlutamaxTM media. Cells were 

passaged at approximately 80-90% confluency. 

 For efferocytosis and substrate experiments peritoneal primary macrophages were 

obtained from either WT or MLRP1-/- mice who had received thioglycolate injections 

to the abdomen five days prior to cell extraction. Cell extraction was performed, and cells 

were seeded directly into 12 or 24-well plates (1x106 cells/well) in 10% FBS, 1% 

pen/strep, DMEM, and incubated at 37C. All experiments involving mice were carried 

out according to and with approval from Oregon Health & Science University’s 

Institutional Animal Care and Use Committee (IACUC). 

Immunohistochemistry 

 Immunohistochemical fluorescent probes were used in order to perform confocal 

and fluorescence-activated cell sorting for efferocytosis quantification. Macrophages 

were labeled with InvitrogenTM Vybrant carboxyfluorescein diacetate, succinimidyl 

ester (CFDA SE) green cell tracker. Macrophages assigned for confocal microscopy were 
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incubated overnight in 12-well plates containing poly-L-lysine 12mm round coverslips. 

The CFDA SE was reconstituted in 90L DMSO for a working solution of 10mM. Cells 

were washed two times with pre-warmed 1X-PBS, then incubated in 1X PBS containing 

5 M CFDA SE for 15 minutes at 37C. Cells were then washed two times with pre-

warmed 1X-PBS. DMEM containing 10% FBS/1% penicillin/streptomycin was replaced 

in the wells and cells were incubated at 37C for 30 minutes. 

Apoptotic cells were labeled with InvitrogenTM CellTrackerTM Violet BMQC 

(2,3,6,7-tetrahydro-9- bromomethyl-1H,5H- quinolizino(9,1‐gh)coumarin), for 

fluorescence-activated cell sorting, or InvitrogenTM CellTrackerTM Red CMTPX 

(C42H40ClN3O4) cell dye, for confocal microscopy. Violet BMQC was reconstituted in 

29.9L DMSO for a concentration of 10mM. Red CMTPX was reconstituted in 7.28L 

of DMSO for a concentration 10mM. Jurkat cells were centrifuged at 1,100 rpm for 10 

minutes. Media was removed and replaced with serum-free DMEM containing 5M 

Violet BMQC, or Red CMTPX, and cells were incubated at 37C for 30 minutes. After 

30 minutes, cells were centrifuged and washed in pre-warmed 1X-PBS with a cell count 

performed at this step. Cells were centrifuged and resuspended in phenol-free/serum-free 

DMEM. Jurkat cells were then seeded into 6-well plates at 3x106 cell/well.  

Confocal Microscopy 

Confocal microscopy was conducted using a Nikon A1R microscope. 

Efferocytosis was quantified by manually counting cells in the open source software, 

ImageJ. To determine phagocytic index (PI) the image was divided into grids and 

portions of the grid were randomly selected. Then green macrophages and green 

macrophages containing a red apoptotic cell were counted in the selected portions. If one 
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macrophage was in contact with or contained multiple apoptotic cells; or if multiple 

macrophages were in contact with one apoptotic cell, then each was counted as a separate 

efferocytosis event (Fig. 7 in results section). 

Fluorescence Activated Cell Sorting – Flow Cytometry 

 Flow cytometry was conducted on the BD Biosciences LSR II flow cytometer. 

Green fluorescence was measured on the 488nm wavelength, and violet fluorescence was 

measured on the 405nm wavelength. Instrument software measured the forward scatter 

(FSC-A) distinguishing the size of the cells, and side scatter (SSC-A) which measures the 

granularity or complexity of the cells. Because macrophages are considerably larger than 

the apoptotic lymphocytes, this allowed us to easily distinguish between cell populations 

based on size (Fig. 6).  

Cell populations were then “gated” according to their fluorescent intensity by 

utilizing green only CFDA-SE (488nm), violet only BMQC (405nm), and unlabeled cell 

populations. This allowed us to divide the scatter plot in the software into four quadrants, 

with green only cells in quadrant three, violet only cells in quadrant one, and unlabeled 

population in quadrant four.  

 To determine phagocytic index (PI), that is, the percent of total macrophages 

containing an apoptotic body, quadrant one (violet only) and quadrant four (unlabeled) 

were excluded from the measurements. Thus, the only cells counted were in the green 

population. Green labeled cells containing a violet signal (double positive) counted as 

efferocytosis and were present in quadrant two.  
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Western Blot 

 MerTK (110 kDa) expression was measured in WT and LRP1-/- macrophages to 

determine if the loss of LRP1 upregulated other pro-efferocytosis receptors. Protein was 

Figure 6. A. Side Scatter (SSC-A) shown on the y-axis measures the complexity of a cell 
based on its granularity and shape. Forward Scatter (FSC-A) shown on the x-axis and 
measures the size of the cell. B. Unlabeled cell populations present in quadrant 4 (Q4) and 
gated accordingly to exclude this population from the cell count. C. Green-only cells, 
measured in the 488nm wavelength, present in quadrant 3. D. Violet only cells, measured in 
the 405nm wavelength appear in quadrant 1. Phagocytic index was measured as the percent 
of total macrophages (green) containing an apoptotic body and appeared in quadrant two as 
a double positive signal (green and violet). 
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extracted from cells, and Lowry assay was conducted to determine protein concentration. 

Protein mixture was prepared at 30g in Thermo-Fisher Scientific invitrogen NuPageTM 

LDS Sample Buffer, Thermo-Fisher Scientific invitrogen NuPageTM Sample Reducing 

Agent, and deionized water. Protein samples (30g) were loaded into Thermo-Fisher 

Scientific Invitrogen NuPageTM 4-12% Bis-Tris Gel (1.0 mm x 10 well). Electrophoresis 

was started at 100-volts for approximately 10 minutes, then at 120-volts for one and a 

half hours. The gel was transferred on ice on to GE Healthcare Life Sciences Amersham 

Protran Premium 0.45m nitrocellulose blotting membrane for two and a half hours at 

28-volts. The blotting membrane was then placed in 5ml LI-COR Odyssey blocking 

buffer (TBS) for one hour.  

After blocking, the blocking buffer was removed, and R&D systems goat anti-

mouse MerTK primary antibody (1:1000), and abcam rabbit anti-mouse vinculin (124 

kDa) primary antibody (1:2500), in 5mL of Odyssey blocking buffer were added to the 

membrane. The membrane was then placed on a rocker overnight at 4C.  

The next day, the primary antibody solution was removed, and the membrane was 

washed three times with Tris-buffered saline containing polysorbate 20 (TBST) for 10 

minutes each time. After the washes, LI-COR secondary antibodies were added in 5ml 

Odyssey blocking buffer. We used donkey anti-goat 800CW for MerTK to be read on 

the green channel (800nm). For vinculin, we used goat anti-rabbit 680RD to be read on 

the red channel (700nm). Fluorescence intensity was measured using the LI-COR 

Odyssey CLx blot imager, and LI-COR ImageStudioTM software. 
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Experiments 

 Experiments took place over ten weeks during the summer of 2016 at the Knight 

Cardiovascular Institute – Center for Preventive Cardiology under the supervision of 

Sergio Fazio MD/Ph.D. (Director of the Center for Preventive Cardiology), and Paul 

Mueller Ph.D.  

Prior to the induction of apoptosis, well conditions were assigned, and Jurkat cells 

were incubated with either CD47 antibody (CD47) or IgG at a concentration of 

10g/mL, during induction of apoptosis. All experiments contained a no-treatment (NT) 

control. For anti-CD47/LRP1 efferocytosis experiments, apoptosis was induced in Jurkat 

cells in 6-well plates exposed to long wavelength ultraviolet light for 30 minutes. Plates 

were placed directly underneath light source at a distance of 10 cm. Apoptosis induction 

for LRP1 substrate experiments utilized staurosporine (1M) protein kinase inhibitor in 

serum-free DMEM.  

For CD47/LRP1 versus WT experiments, efferocytosis was stimulated by co-

incubating apoptotic violet labeled Jurkat cells (either NT, CD47, or IgG) with J774, 

WT, or LRP1-/- green labeled macrophages. Macrophages were washed two times with 

pre-warmed 1X PBS, and 1x106 Jurkat cells were placed directly into the wells, in serum-

free DMEM, with the macrophages according to assigned conditions. Cells were co-

incubated for 2 hours. After two hours wells were washed two times with pre-warmed 

PBS and fixed with 4% paraformaldehyde (PFA) for 15 minutes.  

After fixing, wells assigned for FACS were placed in polystyrene round-bottom 

tubes and taken for flow cytometry either the same or next day. For wells containing 
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coverslips, for confocal microscopy, the coverslips were carefully removed and mounted 

on microscope slides with 5L 4′,6-diamidino-2-phenylindole (DAPI) DNA stain.  

Data Analysis 

 Statistical analysis was conducted using GraphPad Prism 6 statistical analysis 

software. 

Results 

Confocal Microscopy Produces High Variability 

WT 

LRP1
-/-

 

IgG ⍺CD47 
Basal Efferocytosis 

Figure 7. Confocal Microscopy was used to quantify phagocytic Index. Green labeled 
macrophages were co-incubated with red labeled apoptotic cells then imaged on a Nikon 
A1R Confocal Microscope. An efferocytosis event was counted when a macrophage 
contained or was in contact with an apoptotic cell, indicated by the yellow arrows. If a 
macrophage contained multiple apoptotic cells, or multiple macrophages were in contact 
with one apoptotic cell, each was counted as a separate event. 
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For confocal microscopy, primary macrophages (WT or LRP1-/-) were seeded 

onto coverslips, labeled green, and co-incubated with violet labeled apoptotic Jurkat cells. 

Prior to co-incubation, and during apoptosis induction, the Jurkat cells received either the 

CD47 blocking antibody, IgG control or no treatment. The cells were imaged and 

counted as outlined in the methods section. The macrophages were extracted from three 

mice for each genotype and mixed. The cells were then seeded in triplicate into the wells. 

That is three slides per condition (n=3). When imaged, the slides showed a high degree of 

confluency. Therefore, a grid was overlaid on the image in ImageJ, and arbitrary grid 

sections were quantified. Five grid sections were selected, and the percent efferocytosis 

from each section were averaged. As will be discussed, there were imaging issues with 

the WT slides. This only allowed for quantification of n=1 for basal efferocytosis and 

n=2 for IgG and CD47 for the WT group. For the LRP1-/- slides n=3 for all groups. 

 Basal efferocytosis produced a high degree of variability in the LRP1-/- genotype. 

Two slides had values of 35% and 31% phagocytic index (PI) respectively, while one had 

13% PI. Due to the issues with the WT slides only one was quantified for the basal 

condition yielding 31% PI. For the IgG group, the WT slides (n=2) had a PI of 33% and 

19% respectively. The IgG LRP1-/- group (n=3) had 20%, 27%, and 21% PI. For the 

CD47 condition, WT (n=2) yielded 33% and 19% PI. The CD47 LRP1-/- group yielded 

24%, 41%, and 18% PI. Due to the high variability of the results, no statistical tests were 

performed on these results.  

Fluorescence Activated Cell Sorting (FACS) 
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FACS experiments were conducted concurrently with confocal microscopy experiments 

as outlined in the methods section. WT and LRP1-/- primary macrophages were seeded in 

triplicate (n=3) into wells and labeled green. Violet labeled Jurkat cells were exposed to 

IgG, CD47, or no treatment, while exposed to UV light to induce apoptosis.  

Statistical analysis was conducted on GraphPad Prism 6 using a two-way 

ANOVA with Sidak’s multiple comparisons test. The results show that there is no 

difference in phagocytic index between WT and LRP1-/- genotypes for any of the 

treatment groups (p <0.01). WT and LRP1-/- yielded 7.80% and 6.52% PI respectively. It 

is worth noting that the phagocytic index observed in these experiments is significantly 

lower than those observed in previous studies, discussed below. 

Western Blot – MerTK 
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 Protein expression of another pro-efferocytosis receptor, MerTK, was analyzed 

via Western blot to ascertain if other pro-efferocytosis receptors were upregulated and 

explain the results which were observed in the FACS results. This analysis was 

conducted on WT or LRP1-/- primary macrophages (MLRP-/-) that were exposed to 

either a vehicle (Serum-Free DMEM) or IgG control. 

 Macrophages from three mice were collected for each genotype and divided into 

four replicates (n=4), and protein expression was quantified. A Mann-Whitney non-

parametric test was conducted using GraphPad Prism 6. The results show a 1.46-fold 

increase in MerTK expression in the LRP1-/- group compared to the WT (p =0.029).  

Wild Type vs. LRP1 Substrate Experiments 

 WT vs LRP1-/- efferocytosis experiments were conducted in order to gain insight 

into LRP1’s effect on a cell’s ability to be eaten. Primary macrophages from either WT or 

LRP1-/- (KO) macrophages were collected and seeded into well plates. Four experimental 

conditions were selected. WT phagocytosing WT or LRP1-/-, and LRP1-/- phagocytosing 

WT or LRP1-/-. Efferocyte were labeled with a green fluorescent probe and ACs were 

LRP1-/- (KO) vs WT  
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labeled with a violet probe, as per previous experiments. For this experiment, the method 

of inducing apoptosis was changed to staurosporine, discussed below. To determine 

phagocytic index, FACS was performed.  

 A Kruskal-Wallis non-parametric one-way ANOVA, with Dunn’s multiple 

comparison test, was conducted using GraphPad Prism 6. The results show a significant 

decrease (22%, p <0.0001) in phagocytic index when a WT macrophage is phagocytosing 

an LRP1-/- knockout ACs when compared to a WT phagocytosing a WT ACs.  

Discussion 

First, it is important to discuss the results for confocal microscopy. As the data 

shows, there was a high degree of variability when we used this method. This variability 

was consistent throughout assay development and multiple experimental trials. 

Variability may be due to the small sample size. During the imaging process, some of the 

coverslips did not fluoresce and thus, could not be quantified. Despite this, the levels of 

variability have not been seen by other labs using a similar technique.  However, due to 

our results, it was determined that confocal microscopy is not an effective assay to 

determine phagocytic index for efferocytosis in our model. 

The results show that an LRP1 knockout does not affect efferocytosis given a 

CD47 blockade in our model. Therefore, we began to investigate factors which may 

explain our observations. First, we conducted Western blot analysis of another common 

pro-efferocytosis receptor, MerTK. Our results show that MerTK was upregulated 

approximately one and a half fold in the LRP1 knockout macrophages compared to the 

wild type and standardized to our loading control vinculin. Additionally, recent 

proteomics data generated in our lab shows that another pro-efferocytosis receptor, 
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CD36, is highly upregulated in LRP1 knockout macrophages compared to the wild type. 

Future studies will be conducted to determine the effect that these and other pro-

efferocytosis factors have on efferocytosis.  

The results from the FACS experiments also yielded a significantly lower 

phagocytic index than those established by other groups. This was thought to be due to 

the method of apoptosis induction, UV light. After these results, the method of apoptosis 

induction was changed to a chemical method, staurosporine. Changing the method of 

apoptosis induction brought the phagocytic index back in line with literature values as 

observed in the substrate experiment results.  

 We also conducted an experiment using WT or LRP1-/- macrophages as either 

apoptotic cell substrate (ACs) or efferocyte. This was done to determine the effect that 

LRP1 had on a cells ability to be eaten. As the results indicate, an apoptotic cell with 

LRP1 knocked out, results in a significantly lower phagocytic index when being 

phagocytosed by a macrophage which expresses LRP1. Because of these results, we plan 

to analyze a biological process known as autophagy.  

 As mentioned above, LRP1 is a multi-ligand receptor which plays a role in a wide 

range of biological processes. LRP1 has been implicated as a key receptor in autophagy 

(Grosso et al., 2019). Autophagy is the process by which a cell catabolizes and packages 

unnecessary cellular components (Glick, Barth, & Macleod, 2010). Links have been 

established between autophagy and apoptosis (Thorburn, 2008). Therefore, if LRP1 is not 

expressed on an apoptotic cell, this disrupts efficient packaging of the apoptotic cells’ 

cellular components. The incoming efferocyte would have increased difficulty in 

phagocytosing the apoptotic cell. 
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Conclusion 

 The pro-efferocytosis receptor LRP1 is necessary for the athero-protective effect 

of an anti-CD47 antibody blockade in vivo. However, an LRP1 knockout with a CD47 

blockade in vitro does not show impaired efferocytosis compared to the wild type in our 

model. Our subsequent protein expression analysis shows that this may be due to an 

increase in the expression of other pro-efferocytosis receptors. However, a decrease in 

efferocytosis is still seen in vivo. This decrease may be due to LRP1’s role in autophagic 

flux, as discussed above. Therefore, we plan to conduct experiments that repeat the WT 

versus LRP1-/- substrate experiments in the presence of CD47 and continue to measure 

the expression of other pro-efferocytosis receptors in an effort to better understand the 

mechanisms underlying the impaired efferocytosis seen in atherosclerosis.   



CD47 BLOCKADE AND LRP1 EFFEROCYTOSIS 26 

References 

 

Elliott, M. R., Koster, K. M., & Murphy, P. S. (2017). Efferocytosis Signaling in the 

Regulation of Macrophage Inflammatory Responses. The Journal of Immunology, 

198(4), 1387-1394. Retrieved from https://dx.doi.org/10.4049/jimmunol.1601520. 

doi:10.4049/jimmunol.1601520 

Fadok, V. A., Warner, M. L., Bratton, D. L., & Henson, P. M. (1998). CD36 Is Required 

for Phagocytosis of Apoptotic Cells by Human Macrophages That Use Either a 

Phosphatidylserine Receptor or the Vitronectin Receptor (αvβ3). The Journal of 

Immunology(161), 6250-6257.  

Gardai, S. J., McPhillips, K. A., Frasch, S. C., Janssen, W. J., Starefeldt, A., Murphy-

Ullrich, J. E., . . . Henson, P. M. (2005). Cell-surface calreticulin initiates 

clearance of viable or apoptotic cells through trans-activation of LRP on the 

phagocyte. Cell, 123(2), 321-334. Retrieved from 

https://www.ncbi.nlm.nih.gov/pubmed/16239148. doi:10.1016/j.cell.2005.08.032 

Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: cellular and molecular 

mechanisms. J Pathol, 221(1), 3-12. Retrieved from 

https://www.ncbi.nlm.nih.gov/pubmed/20225336. doi:10.1002/path.2697 

Grosso, R. A., Caldarone, P. V. S., Sanchez, M. C., Chiabrando, G. A., Colombo, M. I., 

& Fader, C. M. (2019). Hemin induces autophagy in a leukemic erythroblast cell 

line through the LRP1 receptor. Biosci Rep, 39(1). Retrieved from 

https://www.ncbi.nlm.nih.gov/pubmed/30523204. doi:10.1042/BSR20181156 



CD47 BLOCKADE AND LRP1 EFFEROCYTOSIS 27 

Kasikara, C., Doran, A. C., Cai, B., & Tabas, I. (2018). The role of non-resolving 

inflammation in atherosclerosis. Journal of Clinical Investigation, 128(7), 2713-

2723. Retrieved from https://dx.doi.org/10.1172/JCI97950. doi:10.1172/jci97950 

Kojima, Y., Volkmer, J.-P., McKenna, K., Civelek, M., Lusis, A. J., Miller, C. L., . . . 

Leeper, N. J. (2016). CD47-blocking antibodies restore phagocytosis and prevent 

atherosclerosis. Nature, 536(7614), 86-90. Retrieved from 

https://dx.doi.org/10.1038/nature18935. doi:10.1038/nature18935 

Kojima, Y., Weissman, I. L., & Leeper, N. J. (2017). The Role of Efferocytosis in 

Atherosclerosis. Circulation, 135(5), 476-489. Retrieved from 

https://www.ncbi.nlm.nih.gov/pubmed/28137963. 

doi:10.1161/CIRCULATIONAHA.116.025684 

Linton, M. F., Yancey, P. G., Davies, S. S., Jerome, W. G. J., Linton, E. F., & Vickers, K. 

C. (2015). The Role of Lipids and Lipoproteins in Atherosclerosis. In K. Feingold 

& D. P. Wilson (Eds.), Endotext.org. South Dartmouth, MA: MDText.com, Inc. 

Majeti, R., Chao, M. P., Alizadeh, A. A., Pang, W. W., Jaiswal, S., Kenneth D. Gibbs, J., 

. . . Weissman, I. L. (2009). CD47 is an adverse prognostic factor and therapeutic 

antibody target on human acute myeloid leukemia stem cells. Cell, 138(2), 286-

299. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19632179. 

doi:10.1016/j.cell.2009.05.045 

Moore, K. J., Sheedy, F. J., & Fisher, E. A. (2013). Macrophages in atherosclerosis: a 

dynamic balance. Nature Reviews Immunology, 13(10), 709-721. Retrieved from 

https://dx.doi.org/10.1038/nri3520. doi:10.1038/nri3520 



CD47 BLOCKADE AND LRP1 EFFEROCYTOSIS 28 

Moore, K. J., & Tabas, I. (2011). Macrophages in the pathogenesis of atherosclerosis. 

Cell, 145(3), 341-355. Retrieved from 

https://www.ncbi.nlm.nih.gov/pubmed/21529710. doi:10.1016/j.cell.2011.04.005 

Overton, C. D., Yancey, P. G., Major, A. S., Linton, M. F., & Fazio, S. (2007). Deletion 

of macrophage LDL receptor-related protein increases atherogenesis in the 

mouse. Circulation Research, 100(5), 670-677. Retrieved from 

https://www.ncbi.nlm.nih.gov/pubmed/17303763. 

doi:10.1161/01.RES.0000260204.40510.aa 

Saladin, K. (2012). Anatomy & Physiology: The Unity of form and function (6 ed.). New 

York, NY: McGraw Hill. 

Seimon, T., & Tabas, I. (2009). Mechanisms and consequences of macrophage apoptosis 

in atherosclerosis. Journal of Lipid Research, 50 Suppl, S382-387. Retrieved from 

https://www.ncbi.nlm.nih.gov/pubmed/18953058. doi:10.1194/jlr.R800032-

JLR200 

Tabas, I. (2010). Macrophage death and defective inflammation resolution in 

atherosclerosis. Nature Reviews Immunology, 10(1), 36-46. Retrieved from 

https://www.ncbi.nlm.nih.gov/pubmed/19960040. doi:10.1038/nri2675 

Tabas, I. (2016). Death-defying plaque cells. Nature, 536(7614), 32-33. Retrieved from 

https://dx.doi.org/10.1038/nature18916. doi:10.1038/nature18916 

Thorburn, A. (2008). Apoptosis and autophagy: regulatory connections between two 

supposedly different processes. Apoptosis, 13(1), 1-9. Retrieved from 

https://www.ncbi.nlm.nih.gov/pubmed/17990121. doi:10.1007/s10495-007-0154-

9 



CD47 BLOCKADE AND LRP1 EFFEROCYTOSIS 29 

Thorp, E., Cui, D., Schrijvers, D. M., Kuriakose, G., & Tabas, I. (2008). Mertk receptor 

mutation reduces efferocytosis efficiency and promotes apoptotic cell 

accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice. 

Arterioscler Thromb Vasc Biol, 28(8), 1421-1428. Retrieved from 

https://www.ncbi.nlm.nih.gov/pubmed/18451332. 

doi:10.1161/ATVBAHA.108.167197 

WHO. (2018). The top 10 causes of death. Retrieved from https://www.who.int/news-

room/fact-sheets/detail/the-top-10-causes-of-death 

Yancey, P. G., Blakemore, J., Ding, L., Fan, D., Overton, C. D., Zhang, Y., . . . Fazio, S. 

(2010). Macrophage LRP-1 Controls Plaque Cellularity by Regulating 

Efferocytosis and Akt Activation. Arteriosclerosis, Thrombosis, and Vascular 

Biology, 30(4), 787-795. Retrieved from 

https://dx.doi.org/10.1161/ATVBAHA.109.202051. 

doi:10.1161/atvbaha.109.202051 

Yancey, P. G., Ding, Y., Fan, D., Blakemore, J. L., Zhang, Y., Ding, L., . . . Fazio, S. 

(2011). Low-Density Lipoprotein Receptor-Related Protein 1 Prevents Early 

Atherosclerosis by Limiting Lesional Apoptosis and Inflammatory Ly-6Chigh 

Monocytosis: Evidence That the Effects Are Not Apolipoprotein E Dependent. 

Circulation, 124(4), 454-464. Retrieved from 

https://dx.doi.org/10.1161/CIRCULATIONAHA.111.032268. 

doi:10.1161/circulationaha.111.032268 

 Figures 1-7 provided via smart.servier.com: Creative Commons Attribution 3.0 

Unported License, with modifications by the author. 


	Concordia University - Portland
	CU Commons
	Spring 2019

	CD47 Blockade Enhances Macrophage Efferocytosis Via a Process Requiring Low-Density Lipoprotein Receptor-Related Protein 1
	Richard Anthony Maldonado
	CU Commons Citation


	Abstract
	Immunohistochemistry
	Confocal Microscopy
	Fluorescence Activated Cell Sorting – Flow Cytometry
	Western Blot
	Experiments
	Fluorescence Activated Cell Sorting (FACS)
	Western Blot – MerTK
	Wild Type vs. LRP1 Substrate Experiments

	Conclusion
	References

