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Abstract 

Human infants born prematurely between 23-32 weeks have a predisposition toward 

sustaining white matter injury (WMI).  In survivors of preterm birth, hypoxic-ischemic (H-

I) damage to the cerebral white matter is the leading cause of a spectrum of neurological 

and motor deficits and in severe cases, cerebral palsy (CP).  H-I triggers extracellular 

matrix (ECM) breakdown leading to production of inhibitory ECM components. H-I also 

induces vigorous proliferation of oligodendrocyte progenitor cells (OPCs) leading to 

accumulation of the pre-oligodendrocytes (preOLs).  However, these preOLs fail to 

differentiate and generate myelin producing oligodendrocytes (OLs). Mechanistically, 

ECM breakdown blocks repair and regeneration of myelin following WMI as hyaluronic 

acid (HA), a major component of the brain ECM, is digested into bioactive fragments 

(fHA).  Previous studies have shown that following WMI, HA degraded by PH20 

hyaluronidase to fHA prevents differentiation of preOLs to mature OLs, but whether fHA 

plays a role in H-I mediated OPC proliferation is unknown.  To determine if hyaluronidase 

plays a role in vivo to promote OPC proliferation, we utilized a neonatal rodent preterm 

model of H-I and a new selective PH20 inhibitor, SuBr3.  Our hypothesis tests whether 

SuBr3 mediated inhibition of PH20 activity will also attenuate the OPC proliferation 

response observed after neonatal WMI. We found a significant decrease in Ki67+ cells in 

WMI lesions in the SuBr3 treated animals relative to all other control groups, suggesting 

total cell proliferation was attenuated and mediated by PH20 hyaluronidase activity. Future 

experiments will analyze whether SuBr3 treatment also results in changes in the total pool 

of OL lineage cells and preOLs in the WMI lesions.   
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Introduction 

Each year, an estimated 15 million babies are born premature (Blencowe et al., 2013).  In 

the United States, ten percent of all live births per year are preterm (CDC, 2014). Despite 

new therapies, prematurity is the leading cause of abnormal brain maturation that is 

associated with impaired neurodevelopment in preterm neonates, including motor, 

cognitive, behavioral, or sensory deficits (Chau et al., 2013; Back and Miller, 2014; Back 

and Rosenberg, 2014). During human brain development, infants born between 23-32 

weeks of gestation age have a predisposition toward white matter injury (WMI) (Back et 

al., 2001; Volpe, 2009). Preterm infants have a narrow auto-regulation window where 

cerebral blood flow (CBF) to the brain decreases when arterial blood pressure drops 

(Khwaja and Volpe, 2008).  Inefficient or reduced oxygen and blood to the brain and lungs 

cause injury and is termed Hypoxia-Ischemia (H-I). Hence, WMI is triggered by an 

interaction of factors relating to cerebrovascular immaturity and impaired cerebral blood 

flow that cause complications during pre-term birth. 

One of the hallmarks of WMI is myelination failure (Back and Rosenberg, 2014). 

Myelin is the insulation around the nerve fibers that allows quick transfer of information 

within the brain aiding in cognitive, motor and sensory functions. During human brain 

development, when neonates are most vulnerable to WMI (~23-32 gestation age), pre-

myelinating oligodendrocytes (pre-OLs) are the dominant population in the brain (Back et 

al., 2001). Pre-OLs are the precursor glial cell to mature oligodendrocytes (OLs), a 

specialized glial cell that produces myelin. Pre-OLs are sensitive to H-I insults associated 

with WMI and pre-term birth (Back et al., 2001; Back et al., 2002; Craig et al., 2003; Back 

and Rosenberg, 2014). Thus, pre-term birth disrupts the inception of myelination as pre-
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existing pre-OLs die and the newly born pre-OLs fail to mature to the next successive stage. 

Previous studies have defined the sequential maturation of the OL lineage into four distinct 

stages: oligodendrocyte progenitor cell (OPC), pre-OL, immature OL, and mature 

(myelinating) OL (Back et al., 2002) (Fig. 1).  

The regeneration and repair story for myelin indicates that it is much more complex 

than research originally predicted. Previous studies have defined a novel mechanism of 

myelination failure that disrupts the sequential maturation of the OL lineage in WMI (Back 

et al., 2002). During the early phase of white matter brain injury, preOL death occurs. This 

phase is followed by a vigorous regenerative response of oligodendrocyte progenitor cells 

(OPCs) that re-expand the pre-oligodendrocyte (preOL) pool. However, these newly 

generated preOLs cease to differentiate, and the OL lineage fails to mature to the next 

successive stage (Segovia et al., 2008). Myelin is no longer generated. This abnormal 

proliferation and maturation of OLs contributes to aberrant brain repair after injury and has 

been linked to extracellular matrix (ECM) breakdown (Sherman et al., 2015). 

ECM breakdown is considered one of the main events that influences myelination 

failure following WMI, but the molecular mechanisms are poorly defined (Lau et al., 

2013).  The brain ECM regulates the central nervous system (CNS) in diverse ways and 

significant changes in its physiology have consequences to its function. WMI compromises 

the integrity of the blood-brain barrier (BBB) and the endothelial cells lining the blood 

vessels break down leading to monocyte infiltration and reactive gliosis (Shechter et al., 

2013). A glial scar forms in response to reactive astrogliosis from the demyelinating white 

matter.  Reactive astrogliosis is characterized by proliferating astrocytes as a maladaptive 

response to altered ECM homeostasis. Furthermore, this newly formed glial scar produces 
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an abnormal ECM as it contains altered levels of hyaluronic acid (HA) (Back et al., 2005). 

Hence, WMI induced ECM remodeling generates an altered micro-environment that 

ultimately attenuates remyelination and repair. 

Hyaluronic acid (HA) is a prominent component of the brain ECM that provides 

structural and functional support thereby regulating cellular homeostasis (Rauch, 2004). 

HA is a glycosaminoglycan composed of disaccharide units of glucuronic acid and N-

acetyl-D-glucosamine synthesized by transmembrane synthases (Sherman and Back, 

2008).  WMI results in the formation of the glial scar containing altered levels of HA, 

indicating that HA can play a significant role in influencing myelin repair. Furthermore, 

experiments have shown that remyelination failure is due to accumulation of a specific 

high molecular weight (HMW) form of HA synthesized by reactive proliferating astrocytes 

(astrogliosis) and other microglial cells within the lesions (Back et al., 2005). 

HMW forms of HA found in the white matter lesions have been proposed to be 

digested into bioactive forms by a selective hyaluronidase enzyme, PH20, found in the 

CNS (Preston et al., 2013). This generation of digested bioactive HA fragments (fHA) by 

PH20 hyaluronidase is responsible for arresting preOL maturation following injury in an 

adult rodent model of demyelination. Correspondingly, an elevated expression of PH20 

hyaluronidase was found in the demyelinated brain lesions. Understanding the molecular 

mechanisms mediated by PH20 will aid in development of possible therapies to promote 

regeneration and repair following neonatal WMI. Degradation of HMW-HA by 

hyaluronidases stimulates cell proliferation (Su et al., 2017) and similarly, WMI induces 

proliferation of glial cells as well as OPCs (Segovia et al., 2008); it is not clear whether 

WMI induced HMW-HA breakdown can also influence OPC proliferation.  
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Using a neonatal rodent pre-term equivalent model of Hypoxia-Ischemia, we tested 

whether blocking HMW-HA degradation can influence myelination and repair following 

WMI. This rodent model successfully emulates all the defining features of WMI observed 

in human patients namely, ECM breakdown, OPC proliferation and OL maturation arrest. 

Similar to human preterm WMI, the lesions generated by our well-established neonatal 

rodent H-I model are also highly enriched in GFAP+ reactive astrocytes and display marked 

elevations in staining for HA that coincide with extensive myelination failure. Previous 

studies have been able to promote oligodendrocyte maturation using general hyaluronidase 

inhibitors in vitro (Preston et al., 2013). We investigated the molecular mechanisms 

influencing OPC proliferation following WMI by employing an in vivo approach using a 

new selective hyaluronidase inhibitor, SuBr3, that prevents HMW-HA breakdown. Our 

preliminary studies reveal that SuBr3 treatment attenuates the proliferation of cells in H-I 

induced white matter lesions thereby implicating influence of HMW-HA breakdown on 

cell cycle. Hence, the use of this new selective hyaluronidase inhibitor, SuBr3, will allow 

us to provide further insights into strategies to promote preOL maturation that ultimately 

improve the neurological outcome for children with neurodevelopmental disabilities 

related to preterm birth. 
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Figure 1. The four sequential stages of the oligodendrocyte (OL) lineage after 

white matter injury (WMI). The red line indicates failure of pre-oligodendrocytes 

(preOLs) to differentiate and generate myelin after a vigorous proliferation of 

oligodendrocyte progenitor cells (OPCs) that expand the preOL pool (Back et. al 

2002).  
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Materials and Methods: 

Animal Surgical Procedures   

All animal measures were approved by the OHSU Institutional Animal Care and Use 

Committee (IACUC) according to the NIH Guide for the Care and Use of Laboratory 

Animals. Timed pregnant Sprague-Dawley (SD) rats were purchased from Charles River 

(Hollister, CA, USA). At postnatal day 3 (P3), animals were anaesthetized and received a 

single injection of 2M SuBr3 (final concentration) or equivalent volume of vehicle 

(DMSO) into the left hemisphere. This was immediately followed a hypoxic-ischemic 

protocol with the left common carotid artery ligation (10 pups/litter) to generate focal 

cerebral injury lateralized to one hemisphere with the contralateral hemisphere serving as 

a control (Vannucci, 1999; Segovia et. al, 2008). Following a minimum of 1h recovery 

with their dams, pups were placed into containers (submerged into a 37oC water bath to 

maintain normothermia) aerated with humidified oxygen (6% for 3.5h) and balanced 

nitrogen at 3 L/min. The pups were then returned to their dams until sacrifice (Hypoxia-

Ischemia [H-I] group). Animals survived for 4 days (until P7). A set of animals were also 

recovered without receiving surgery/ischemia and were treated as un-injured controls.  

Animals were sacrificed by decapitation following anesthesia. The brains were 

quickly dissected out and assessed for the presence of lesions. Only brains exhibiting well-

defined brain lesions were included in this study. A set of lesioned brains were collected 

and fixed in 4% paraformaldehyde (PFA; 0.1 M phosphate buffered saline [PBS]) for 2 

days at 4oC, followed by thorough PBS washing for immunohistochemistry (IHC). For 

each experimental outcome, a minimum of three brain sections were used for each group 

(Fig. 2).  



 12 

 

Immunohistochemistry 

Single- or double-labeling immunofluorescence was performed on 50M thick brain 

sections cut with a Vibratome (Leica VT1000) in 24-well plates. Antibodies and dilutions 

were as follows: mouse polyclonal anti-GFAP (1:500; EMD Millipore), rabbit polyclonal 

anti-Ki67 (1:100; Leica, USA), and mouse monoclonal anti-olig2 (1:250; Dr. John Alberta, 

Dana-Farber Cancer Institute, Boston, MA, USA). For all the antibodies used the sections 

underwent the antigen retrieval procedure wherein the sections were incubated in 0.01 M 

citrate buffer (pH 6.0) at 85°C for 15 min, left to cool for 10 min, and then washed three 

times in PBS. For labeling, sections were blocked for 1h in PBS containing 5% normal 

goat serum (NGS), and then with primary antibodies diluted in PBS/3% NGS for 3-4 nights 

at 4°C. Blocking and primary antibody incubation was performed with 0.4% triton X-100 

(Sigma-Aldrich Co.). For secondary detection, all sections were washed three times in 

PBS, and incubated with appropriate fluorescent dye conjugated secondary antibodies 

(Jackson Research Labs). Nuclei were counterstained with DAPI (Invitrogen Co.). 

Sections were mounted with Vectashield fluorescent mounting medium (Vector 

Laboratories, Inc., Burlingame, CA, USA).  

 

Quantification of Total Cell Count of GFAP+ and Ki67+-labeled Cells 

The white matter of sectioned tissue slices was analyzed using a Ziess Imager.M2 

microscope (Carl Ziess Microscopy, Thornwood, NY, USA) coupled to a Stereo-

Investigator (SI) stereology system (MBF Bioscience, Williston, VT, USA). For each 

histological (serial) section slice, the superior corpus callosum (defined by DAPI-staining) 

region of interest (ROI) was traced at 5x magnification. Using the software to maintain 
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white matter boundaries,  GFAP+ and Ki67+-labeled cells were estimated in the superior 

corpus callosum using the Optical Fractionator probe (Counting frame, 40×40μm; z-depth, 

20μm) at 100X oil magnification. Cells were counted in a minimum of three adjacent 

coronal sections (300μm apart) in lesions and their corresponding control regions in the 

contralateral hemisphere. A minimum of 20 randomly selected white matter fields was 

counted per slice. The slice thickness was also measured at each counting site. The total 

number of counted nucleus profiles comprised the calculation of the total cell count.  

 

Quantification of Total Cell Count of Olig2+, Ki67+, Olig2+-Ki67+-labeled Cells 

From the same perinatal rodents, tissue sections were immunofluorescently double-labeled 

for Olig2 and Ki67. Quantification of total Olig2+, Ki67+ and Olig2+-Ki67+-labeled cells 

was determined in tissue sections with the same regional boundaries as GFAP+ or Ki67+-

labeled cells. Lesion hemispheres were identified via histology by typical reactive 

appearance of early OL progenitors plus preOL and OL death. The white matter of 

sectioned tissue slices was analyzed using the same Ziess Imager.M2 microscope coupled 

to a SI stereology system. Cell profiles were counted with a 100X objective. For each slice, 

the superior corpus callosum was traced at 5x magnification. Using SI stereology system 

to maintain white matter boundaries,  three separate markers were used to make cells counts 

for Olig2+, Ki67+ and double-labeled Olig2+-Ki67+ cells. Cells were estimated in the 

superior corpus callosum using the Optical Fractionator probe (Counting frame, 40×40μm; 

z-depth, 20μm) at 100X oil magnification. Because of the complexity of injury in animals, 

each coronal section was categorized A, B, or C signifying the location of sections in the 

brain as rostral, medial, or caudal respectively. A minimum of 20 randomly selected white 

matter fields was counted per slice and slice thickness was measured at each counting site. 
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The total number of counted nucleus profiles of OL lineage cells comprised the calculation 

of the total cell count.  

 

Image and Statistical Analysis 

Microscope images were analyzed using Fiji ImageJ software. Data from slice counts were 

analyzed using multiple comparisons with ordinary one-way ANOVA with Prism Version 

7.0 (GraphPad Software, Inc., La Jolla, CA, USA). All data were normally distributed and 

expressed as standard error of mean (+/- SEM). To determine the effect of H-I on total cell 

measurements, we used mean cerebral thickness as a marker for spatial distribution of total 

cell count. For each lesion and corresponding contralateral control region, cerebral 

thickness was measured between first and last nucleus in focus within counting grid of the 

SI stereology probe. Three thickness measurements were obtained at the medial, midpoint, 

and lateral boundaries of the lesion within the superior corpus callosum contoured region 

of interest (ROI). First, data analysis was performed on each individual animal case within 

H-I groups (DMSO H-I and SuBr3 H-I) between H-I lesion and the contralateral control 

hemisphere. Because biological variability exists between animals, we accounted for the 

degree of injury between each individual animal when comparing total cells counts 

between treatment groups. Multiple comparisons with ordinary one-way ANOVA was run 

between pooled control and H-I groups to determine relative cell loss due to induced H-I. 

Means with error bars are presented in all figures with significance indicated for statistical 

analyses. A p-value less than 0.05 was considered statistically significant. (For all figures, 

*p  0.05, **p  0.01, ***p    0.001 refer to analysis of data significance for cerebral cell 

loss between groups.) 
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Figure 2.  Hypoxic-ischemic (H-I) brain tissue cut on coronal plane with a 

Vibratome (Leica VT1000).  Representative image of the area of counting in the 

superior corpus callosum (CC) of SuBr3-injected (2μM) animals. The blue and 

red box indicates area of counting in the control and lesion hemisphere, 

respectively. The white arrow indicates injection site of SuBr3 in lesion 

hemisphere.  
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Results 

Using Reactive Astrogliosis to define WMI induced lesions following Hypoxia-Ischemia 

Previous studies using post-mortem tissue derived from preterm human infants suggest that 

arrested maturation of preOLs is associated with ECM remodeling leading to HA 

accumulation and reactive gliosis (Buser et al., 2012). Our preterm equivalent rodent model 

also undergoes preOL arrest following H-I (Segovia et al., 2008) but whether this is 

accompanied with ECM remodeling leading to changes in HA levels in the neonatal lesions 

remains unknown. To study mechanisms of ECM remodeling in the lesions we first defined 

the H-I induced lesions. We used GFAP as a marker for defining the H-I induced lesion as 

elevated astrocyte expression in response to H-I corresponds to injury in vivo (Lyck et al., 

2008). We determined the severity of injury in animals given either SuBr3 (to block ECM 

remodeling) or Vehicle (DMSO) and then subjected to H-I. In the SuBr3 group, the 

population of GFAP+-labeled astrocytes increased in lesioned areas compared to 

corresponding contralateral control region (Fig. 3). And the same was the case with DMSO 

H-I group (B1-B3) (Fig. 4). Increase in GFAP+ astrocytes in both the groups (DMSO and 

SuBr3) following H-I indicates that the lesions were induced following injury. 

We also observed biological variability within the SuBr3 and DMSO H-I 

experimental groups. Cell counts from Animal A2* do not reflect injury after H-I (Fig. 3). 

In fact, we observed a downward trend in the total cell count of the lesioned hemisphere 

compared to the contralateral control hemisphere, which could be increased cell death or 

cell migration following H-I. After review, we found the lesion as defined by GFAP+ 

astrocytes fell outside the region of counting defined within the superior corpus callosum 

(Fig. 2). Because we used a conservative systematic sampling approach via stereology, 
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lesions outside the counting region will not reflect injury, however, we did confirm injury 

through histology. Similarly, in the DMSO H-I group animal B3, the contralateral un-

lesioned hemisphere had variable expression of GFAP+ astrocytes (Fig.4). Hence, these 

results helped us narrow down the cohort of animals that had sustained WMI following H-

I that we then utilized for our subsequent analysis for ECM remodeling and its effects on 

preOL maturation.  

 

SuBr3 Attenuates Total Cell Proliferation after Hypoxia-Ischemia  

ECM remodeling induced breakdown of HA by hyaluronidases leads to cell proliferation 

(Su et al., 2017). In our preterm equivalent rodent model, H-I apart from inducing preOL 

arrest also induces OPC proliferation (Segovia et al., 2008). It remains unknown whether 

ECM remodeling is linked to regulating OPC proliferation in our rodent model following 

H-I. Using a new class of selective hyaluronidase inhibitor, SuBr3, we investigated if HA 

breakdown regulates cell proliferation. After confirming the lesions in the different 

experimental and control groups with GFAP, proliferating cells within these lesions were 

identified with the cycle-cell proliferation marker Ki67 (Scholzen and Gerdes, 2000). The 

lesions in the DMSO H-I group displayed a non-significant increase in the total number 

of Ki67+ cells (Fig.6) suggesting that injury promotes cell proliferation. Importantly, 

these results indicate that DMSO treatment itself does not influence cell proliferation 

following injury. In contrast, total population of Ki67+ cells decreased in lesioned 

hemisphere compared to corresponding contralateral control hemisphere in individual 

SuBr3 H-I animals except for A3* (Fig. 5).  
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Since the animals were stereotactically injected with either DMSO or SuBr3 prior 

to being subjected to H-I and the injection procedure itself can induce injury mediated cell 

proliferation, we next compared the total numbers of Ki67+ cells amongst all the control 

and experimental groups: True Controls (animals that did not undergo H-I or ICV 

injections; n=2), DMSO Control (animals that received DMSO ICV injections only; n=2), 

DMSO H-I (animals that received DMSO ICV injections and also underwent H-I; n=3), 

and SuBr3 Control (animal that received SuBr3 ICV injection only; n=2) and SuBr3 H-I 

(animals that received SuBr3 ICV injections and also underwent H-I; n=4) (Fig. 8). 

Compared to DMSO H-I group, total Ki67+ cell counts in the SuBr3 H-I group were 

significantly decreased (Fig. 8). Collectively, these results support that SuBr3 selectively 

blocks a cell proliferative response in the white matter lesions generated by H-I and this 

may be linked to HA breakdown.  

 

Does SuBr3 Influence OPC Proliferation Following H-I? 

H-I at P3 leads to reactive gliosis and OPC proliferation (Segovia et al., 2008) whereas 

SuBr3 treatment prior to H-I appears to attenuate total cell proliferation (Fig. 7); we next 

examined whether SuBr3 attenuated H-I induced OPC proliferation. To this end, the 

lesions from animals with confirmed WMI (Fig. 3 and Fig. 4) were double stained with 

Olig2 (labels the OL lineage cells) and Ki67 to determine proliferating OPCs.  

We compared the total number of Olig2+ and Olig2+-Ki67+-labeled cells in our 

control and experimental groups (Fig.8). Analyzing only Olig2+ cells, we determined that 

cell counts were significantly decreased in the SuBr3 H-I cell compared to the DMSO H-I 

group (Fig. 9A). This suggested that the SuBr3 influenced either the survival or 
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proliferation of OL lineage cells. We next examined the total numbers of proliferating 

OPCs by counting Olig2+-Ki67+ double labeled cells, but we were not able to detect any 

significant differences between the control and experimental groups (Fig. 9B). 

Collectively, these results suggest that attenuating HA breakdown following WMI by 

SuBr3 treatment may influence survival of OL lineage cells suggesting that under 

conditions of injury hyaluronidase activity may also play a protective role. It is not clear 

from our data regarding the identity of the glial or neuronal cell type whose proliferation 

is regulated by hyaluronidase activity as SuBr3 treatment attenuates the total pool of 

proliferating cells. Future studies, using a bigger cohort of animals and SuBr3 will examine 

all the cell types whose proliferation could be influenced by WMI.   
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Figure 3.  Total GFAP-labeled cells in superior corpus callosum of four H-I 

injected SuBr3 animals. Total population of GFAP+-labeled astrocytes increased 

in lesioned areas compared to corresponding contralateral control region, 

however, treated animals displayed no significant difference in total cell counts 

between the lesion and corresponding contralateral control hemisphere (n=4). 

Confirmed injury through histology. 
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Figure 4.  Total GFAP-labeled cells in superior corpus callosum of H-I injected 

DMSO animals. Total population of GFAP+-labeled astrocytes increased in 

lesioned areas compared to corresponding contralateral control region (n=3). 
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Figure 5.  Total Ki-67 labeled cells in superior corpus callosum in same four H-I 

SuBr3 animals. Total population of Ki67+-labeled cells decreased in lesioned 

hemisphere compared to corresponding contralateral control hemisphere in H-I 

injected SuBr3 animals (n=4). 
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Figure 6.  Total Ki-67 labeled cells in superior corpus callosum in same H-I 

DMSO animals. Total population of Ki67+-labeled cells was similar between 

lesioned hemisphere and corresponding contralateral control hemisphere. DMSO 

alone did not have an effect on total cell proliferation. Total cell counts were non-

significant (n=3). 
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A B 

Figure 7.  Representative images of the corpus callosum (CC) from rats that sustained 

WMI. Brain tissues were fixed and stained with glial fibrillary acidic protein (GFAP; 

red; to label astrocytes), cell-cycle marker (Ki67; green; to label cell proliferation), 

and 4 ́, 6- diamidino-2-phenyl-inodole (DAPI; blue; to label nuclei). To block 

hyaluronidase activity, animals were treated with SuBr3 (2μM). A) There is an 

increased localization of Ki67+ cells but decreased GFAP+ astrocytes in Control 

hemisphere and B) a decreased localization of Ki67+ cells and increased GFAP+ 

astrocytes in H-I hemisphere. 
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Figure 8.  Combined mean Ki-67+-labeled cells in lesion hemisphere of H-I 

SuBr3 animals compared to all other control groups: True Control (n=2 

animals), DMSO Control (n=2 animals), DMSO H-I (n=3 animals), and SuBr3 

Control (n=1 animals). Total cell counts in SuBr3 injected H-I lesion animals 

significantly decreased relative to DMSO H-I (***p=0.0007). 
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B. 

Figure 9.  A) Pooled mean 

Olig2+-labeled counts in control 

groups: True Control (n=2 

animals), DMSO Control (n=1 

animals), DMSO H-I (n=3 

animals), and SuBr3 Control (n=1 

animals) compared to SuBr3 H-I 

animals (n=3 animals). SuBr3 H-I 

cell counts decreased significantly 

compared to DMSO H-I 

(*p=0.0123). B) Pooled Olig2+-

Ki67+-labeled cell counts were 

non-significant between the 

control and experimental groups.  
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Discussion 

Previous report from our lab has linked accumulation of HA and myelination failure 

that disrupts the maturation of the OL cell lineage in pre-term human neonates (Buser et 

al., 2012) (Fig. 1). WMI triggers neuronal and glial cell death, but the developing brain 

induces both migration and proliferation of OPCs into the white matter lesions resulting in 

expansion of the preOL pool. However, these newly formed preOLs then fail to mature 

into myelin producing OLs. Thus, myelination failure and breakdown of the ECM 

contributes to abnormal brain repair after WMI (Back and Rosenberg, 2014). By 

employing a new selective hyaluronidase inhibitor, SuBr3, we investigated the potential 

outcomes of attenuating ECM breakdown following WMI in vivo. Our present study 

suggests that HMW-HA breakdown in vivo regulates cell proliferation in the white matter 

lesions.  

Although ECM breakdown is one of the main events that coordinates the events 

leading to myelination failure following WMI, the molecular mechanisms remain poorly 

defined (Lau et al., 2013). HMW-HA in its intact form negatively regulates cell 

proliferation by its breakdown either via hyaluronidase activity or oxidative stress 

promotes cell proliferation (Morrison et al., 2001; Preston and Sherman, 2013; Su et al., 

2016). A previous study utilizing an adult rodent model of WMI implicated PH20 

hyaluronidase in preventing the differentiation of preOLs to mature OLs (Preston et. al, 

2013).  That study relied on a general hyaluronidase inhibitor, which could potentially have 

off target effects and it also did not address whether ECM modification plays a role in OPC 

proliferation following WMI. To investigate the molecular mechanisms influencing OPC 

proliferation following WMI we took advantage of our rodent pre-term equivalent model 
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and tested a more selective hyaluronidase inhibitor, SuBr3. This inhibitor (SuBr3) is 

derived from apigenin (compounds with well-known anti-hyaluronidase activity) and has 

a flavonoid modification for increased solubility and efficacy (Srinavasa et al., 2014). We 

observed reduced number of proliferating cells in response to SuBr3 treatment in vivo. 

Specifically, the SuBr3 treated animals displayed a decrease in Ki67+ proliferating cells in 

lesioned hemispheres compared to corresponding contralateral control hemispheres (Fig. 

5). Furthermore, combined mean cell counts for Ki67+ cells in SuBr3 H-I lesion 

hemispheres decreased significantly compared to all other control groups (Fig. 8). 

Collectively, these results support that SuBr3 selectively blocks a cell proliferative 

response in the white matter lesions generated by H-I. Hence, these results suggest a 

mechanistic link between HMW-HA breakdown and OPC proliferation in vivo. 

 Since WMI drives cell proliferation of OPCs in vivo (Segovia et al., 2008), we 

determined whether SuBr3 treatment could influence this event. We determined the total 

numbers of proliferating OPCs by counting Olig2+-Ki67+ double labeled cells, but were 

not able to detect any significant differences between the control and experimental groups 

(Fig. 9B). Surprisingly, we observed a significant decrease in the Olig2+-labeled cell 

population in SuBr3 treated animals compared to DMSO treated animals (Fig. 9A). 

Although the cohort of animals utilized for this preliminary study is small, nevertheless, 

these observations suggest that HMW-HA breakdown following WMI apart from 

regulating cell proliferation could also either influence the survival or migration of OL 

lineage cells in the WM lesions.  

Overall our findings indicate that the PH20 inhibitor, SuBr3, can be utilized to 

provide new insights into mechanisms that block normal myelination, and, thereby could 
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be helpful in developing new therapies to reverse arrested white matter maturation in 

survivors of premature birth. Since remyelination requires repair of the ECM and the 

sequential maturation of OL lineage in the WM lesions, it is critical to investigate the 

mechanisms following WMI by employing in vivo approaches. Since Olig2 labels all the 

cells of the OL lineage irrespective of their developmental stage, future experiments will 

analyze SuBr3 treatment utilizing a larger cohort of animals and OL cell stage specific 

markers in H-I lesions. Potential roles for hyaluronidase activity either in OL cell survival 

or migration will also be explored by using selective markers for cell death and migration. 

Additionally, future studies will attempt to define a time point in which analysis of both 

proliferating and arrested preOLs can be performed when the drug is administered. These 

efforts will provide further insights into strategies to promote preOL maturation that 

ultimately improve the neurological outcome for children with neurodevelopmental 

disabilities related to preterm birth. 
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